Respuesta :

Answer:

[tex]\int ln|4x+5| dx=(x+\frac{5}{4} )(ln|4x+5|)+c\\[/tex]

Step-by-step explanation:

The formula to integrate a natural logarithm is

[tex]\int lnu du =uln|u|-u+c[/tex]

in this case

[tex]u=4x+5[/tex]

and the derivative:

[tex]du=4dx[/tex]

thus

[tex]dx=\frac{du}{4}[/tex]

we have are asked for the integral:

[tex]\int ln|4x+5| dx [/tex]

so replacing [tex]u=4x+5[/tex] and [tex]dx=\frac{du}{4}[/tex]

[tex]\int ln|u|\frac{du}{4}[/tex]

which is the same as

[tex]\frac{1}{4} \int ln|u|du[/tex]

using the formula we have:

[tex]\frac{1}{4}\int ln|u|du =\frac{1}{4}(uln|u|-u)+c[/tex]

and since  [tex]u=4x+5[/tex]

[tex]=\frac{1}{4} [(4x+5)ln|4x+5|]+c\\=(x+\frac{5}{4} )(ln|4x+5|)+c\\[/tex]