Respuesta :

Answer:

There are  1,039,584 ways in which this can be done.

Step-by-step explanation:

Total number of black marbles  = 17

Total number of blue marbles  = 9

The number black marbles to be chosen = 6

The number blue marbles to be chosen = 3

So, we have to choose 6 black from 17 black marbles.

and  to choose 3 blue from 9 blue marbles.

So, the number if possible ways to do it : [tex]^{17}  \textrm{C}_ {6}  \times ^{9}  \textrm{C}_ {3}[/tex]

[tex]^{n}  \textrm{C}_ {r}  = \frac{n! }{r! (n-r)!}[/tex]

Now, solving [tex]^{17}  \textrm{C}_ {6}[/tex], we get:

[tex]^{17}  \textrm{C}_ {6}  = \frac{17!}{6! \times 11!}  \\= \frac{17 \times 16 \times 15 \times 14\times 13\times 12 \times 11! }{11! \times (6\times 5 \times 4 \times 3\times 2)}   = 12,376[/tex]

solving [tex]^{9}  \textrm{C}_ {3}[/tex], we get:

[tex]^{9}\textrm{C}_{3}  = \frac{9!}{6! \times 3!}\\= \frac{9 \times 8 \times 7  \times 6! }{6!\times (3\times 2 )} = 84[/tex]

[tex]\implies^{17}\textrm{C}_ {6}\times ^{9}  \textrm{C}_ {3}=12,376 \times 84 = 1,039,584[/tex]

Hence, there are  1,039,584 ways in which this can be done.