A 12-kg crate rests on a horizontal surface and a boy pulls on itwith a force that is 30? below the horizontal. If the coefficient of static friction is 0.40, theminimum magnitude force he needs to start the crate moving is: A. 44N B. 47N C. 54N D. 56N E. 71N

Respuesta :

Answer:

E.71 N

Explanation:

Given Data

Mass=12 kg

Angle=30°

static friction=0.44 N

To Find

Force=?

Solution

Sum of the forces in the direction of motion is given as

= 0 = F×cos(30) - friction  

Sum of the forces in the vertical direction (up is positive) is given as

= 0 = N - mg - F×sin(30)

N = m×g + F×sin(30)

From the definition of friction

friction = u×N

friction = u×(m×g+F×sin(30))

Plug back into the top

0 = F*cos(30) - (u*m*g+u*F*sin(30))

Solve for F

u×m×g = F×(cos(30) - u×sin(30))

F = (u×m×g) / (cos(30) - u×sin(30))

Put the number we get

F = 71 N

So Option E is correct

"71 N" would be the minimum magnitude force he needs.

According to the question,

Mass,

  • m = 12 kg

Coefficient of static friction,

  • μ = 0.40

Angle,

  • [tex]\Theta[/tex] = 30°

We know,

→ [tex]\Sigma F = F_{app} -f[/tex]

      [tex]0 = F Cos \Theta-f[/tex]

Force along vertical,

→ [tex]N= mg +F Sin \Theta[/tex]

or,

→ [tex]F Cos \Theta = f = \mu (mg+F Sin \Theta)[/tex]

→ [tex]F Cos \Theta- \mu F Sin \Theta = \mu mg[/tex]

                             [tex]F = \frac{\mu mg}{Cos \Theta - \mu Sin \Theta}[/tex]

By substituting the values, we get

                                 [tex]= \frac{0.4\times 12\times 9.8}{Cos 30^{\circ} -(0.4) Sin 30^{\circ}}[/tex]

                                 [tex]= 70.62 \ N[/tex]

or,

                                 [tex]= 71 \ N[/tex]

Thus the above answer i.e., "Option E" is right.  

Learn more:

https://brainly.com/question/14394798