Respuesta :
Answer:
[tex]m_l=550\ kg[/tex] is the mass of librarian.
Explanation:
Given:
- mass of the system, [tex]m_s=3.3\times 10^{3}\ kg[/tex]
- velocity of librarian relative to the ground, [tex]v_l=2.5\ m.s^{-1}[/tex]
- velocity of the cart relative to the ground, [tex]v_c=0.5\ m.s^{-1}[/tex]
Now using the principle of elastic collision:
Net momentum of the system is zero.
[tex]m_l\times v_l=(3300-m_l)\times v_c[/tex]
[tex]m_l\times 2.5=(3300-m_l)\times 0.5[/tex]
[tex]m_l=550\ kg[/tex] is the mass of librarian.
Answer:
660 kg
Explanation:
Using conservation of momentum:
[tex]P_{f} =P_{i}[/tex]
The initial momentum of cart + librarian is zero because at rest!
[tex]P_{i} = 0\\P_{f} = 0[/tex]
The final momentum can be calculated as follows:
[tex]P_{f} = m_{publication}*v_{cart} + m_{librarian}*v_{librarian} \\\\m_{librarian} = \frac{- m_{publication}*v_{cart}}{v_{librarian}} \\\\m_{librarian} = \frac{- 3.3*10^3*0.05}{-2.5} \\\\m_{librarian} = 660kg[/tex]