Answer:
Population after [tex]t\ years=250000\times (0.985)^t[/tex]
Step-by-step explanation:
If [tex]P[/tex] is the initial amount, [tex]r[/tex] is the annual rate of decrease then after [tex]t[/tex] years the remaining amount[tex](A)[/tex] will be given by
[tex]A=P(1-\frac{r}{100})^t[/tex]
Here [tex]P=250000, r=1.5\%\\\\A=250000(1-\frac{1.5}{100})^t\\\\A=250000(1-0.015)^t\\\\A=250000\times (0.985)^t[/tex]