Respuesta :

Answer:

Part 1) [tex]x=35^o[/tex]

Part 2) [tex]y=30^o[/tex]

Step-by-step explanation:

Part 1) Find the value of x

we know that

The diagonal of the figure divide the kite into two congruent triangles

so

[tex](3x+5)^o=(4x-30)^o[/tex]

solve for x

Group terms

[tex]4x-3x=5+30[/tex]

[tex]x=35^o[/tex]

Part 2) Find the value of y

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]y^o+(3x+5)^o+(2y-20)^o=180^o[/tex]

substitute the value of x

[tex]y^o+(3(35)+5)^o+(2y-20)^o=180^o[/tex]

[tex]y^o+(110)^o+(2y-20)^o=180^o[/tex]

solve for y

combine like terms

[tex](3y+90)^o=180^o[/tex]

[tex]3y=90^o[/tex]

[tex]y=30^o[/tex]