contestada

Find the value of x in each case. Give reasons to justify your solutions! N ∈ KO

Find the value of x in each case Give reasons to justify your solutions N KO class=

Respuesta :

x =30°

Step-by-step explanation:

Step 1:  To find [tex]\angle \mathrm{KNL}[/tex].

Given N ∈ KO, where KO is a line.

Sum of the adjacent angles in a straight line is 180°.

[tex]\Rightarrow \angle \mathrm{KNL}+\angle \mathrm{LNM}+\angle \mathrm{MNO}=180^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{KNL}+45^{\circ}+105^{\circ}=180^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{KNL}+150^{\circ}=180^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{KNL}=180^{\circ}-150^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{KNL}=30^{\circ}[/tex]

Step 2:  To find [tex]\angle \mathrm{NLK}[/tex].

Sum of the adjacent angles in a straight line is 180°.

Given[tex]\angle \mathrm{NLM}=90^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{NLM}+\angle \mathrm{NLK}=180^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{NLK}=180^{\circ}-90^{\circ}[/tex]

[tex]\Rightarrow \angle \mathrm{NLK}=90^{\circ}[/tex]

Step 3:  To find x.

Sum of the interior angles in a triangle is 180°.

Let us take the triangle NLK.

[tex]\Rightarrow \angle \mathrm{KNL}+\angle \mathrm{NLK}+\angle \mathrm{LKN}=180^{\circ}[/tex]

⇒ 30° + 90° + 2x = 180°

⇒ 2x = 180° – 30° – 90°

⇒ 2x = 60°

x = 30°

Hence, x = 30°.

Answer:

x = 30 degrees

Step-by-step explanation:

;)