Respuesta :

Answer with Step-by-step explanation:

We are given that

Discriminant, D=[tex]b^2-4ac[/tex]

When [tex]D\geq 0[/tex]

Then, the function have two  real zeroes.

1.[tex]f(x)=x^2+6x+8[/tex]

By comparing withe general quadratic equation

[tex]ax^2+bx+c=0[/tex]

We get a=1,b=6,c=8

Using the discriminant formula

[tex]D=(6)^2-4(1)(8)=36-32=4>0[/tex]

Hence, function have two real zeroes.

2.[tex]g(x)=x^2+4x+8[/tex]

[tex]D=(4)^2-4(1)(8)=16-32[/tex]

[tex]D=-16<0[/tex]

Hence, the function have no two real number zeroes.

3.[tex]h(x)=x^2-12x+32[/tex]

[tex]D=(-12)^2-4(1)(32)=144-128=16[/tex]

[tex]D>0[/tex]

Hence, function have two real zeroes.

4.[tex]k(x)=x^2+4x-1[/tex]

[tex]D=(4)^2-4(1)(-1)=16+4=20[/tex]

[tex]D>0[/tex]

Hence, function have two real zeroes.

5.[tex]p(x)=5x^2+5x+4[/tex]

[tex]D=(5)^2-4(5)(4)=25-80[/tex]

[tex]D=-55<0[/tex]

Hence, the function have no two real number zeroes.

6.[tex]r(x)=x^2-2x-15[/tex]

[tex]D=(-2)^2-4(1)(-15)=4+60=64[/tex]

[tex]D>0[/tex]

Hence, function have two real zeroes.

Answer:

A, C, D, and F

Step-by-step explanation:

Edge