Respuesta :
Answer:
Step-by-step explanation:
[tex]-4-\sqrt{2}i \\ absolute ~value=\sqrt{(-4)^2+(-\sqrt{2} )^2} =\sqrt{18}=3\sqrt{2 }[/tex]
Answer : The absolute value of the given complex is, [tex]3\sqrt{2}[/tex]
Step-by-step explanation :
As we know that,
The complex number is, a + bi
The absolute value = [tex]\sqrt{a^2+b^2}[/tex]
Given :
The complex number [tex]-4-\sqrt{2}i[/tex].
For this complex number:
a = -4
b = [tex]-\sqrt{2}[/tex]
Thus, the absolute value will be:
[tex]\sqrt{a^2+b^2}=\sqrt{(-4)^2+(-\sqrt{2})^2}=\sqrt{16+2}=\sqrt{18}=3\sqrt{2}[/tex]
Thus, the absolute value of the given complex is, [tex]3\sqrt{2}[/tex]