Respuesta :

Answer:

Step-by-step explanation:

[tex]-4-\sqrt{2}i \\ absolute ~value=\sqrt{(-4)^2+(-\sqrt{2} )^2} =\sqrt{18}=3\sqrt{2 }[/tex]

Answer : The absolute value of the given complex is, [tex]3\sqrt{2}[/tex]

Step-by-step explanation :

As we know that,

The complex number is, a + bi

The absolute value = [tex]\sqrt{a^2+b^2}[/tex]

Given :

The complex number [tex]-4-\sqrt{2}i[/tex].

For this complex number:

a = -4

b = [tex]-\sqrt{2}[/tex]

Thus, the absolute value will be:

[tex]\sqrt{a^2+b^2}=\sqrt{(-4)^2+(-\sqrt{2})^2}=\sqrt{16+2}=\sqrt{18}=3\sqrt{2}[/tex]

Thus, the absolute value of the given complex is, [tex]3\sqrt{2}[/tex]