Answer:
7.62
Explanation:
According to the Henderson-Hasselbach equation, the pH value o a buffer can be calculated by the following equation:
[tex]pH = pK_a + log(\frac{[A^-]}{[HA]})[/tex]
Let's identify the variables:
[tex]pK_a = -log(K_a) = -log(4.0\cdot 10^{-8}) = 7.40[/tex]
[tex][A^-] = [ClO^-][/tex]
[tex][HA] = [HClO][/tex]
Identify the moles of each component:
[tex]n_{ClO^-} = 0.61~M\cdot 0.0255~L = 0.015555~mol[/tex]
[tex]n_{HClO^} = 0.61~M\cdot 0.0255~L = 0.015555~mol[/tex]
The strong base reacts with acid to produce more of the basic component:
[tex]OH^- (aq) + HClO (aq)\rightarrow ClO^- (aq) + H_2O (l)[/tex]
Hydroxide is the limiting reactant. The new amounts of the weak acid and base are:
[tex]n_{HClO} = 0.015555~mol - 0.0039~mol = 0.011655~mol[/tex]
[tex]n_{ClO^-} = 0.015555~mol + 0.0039~mol = 0.019455~mol[/tex]
Let's use the molar amounts in the equation, as we have exactly same volume for each component in the buffer:
[tex]pH = 7.40 + log(\frac{0.019455~mol}{0.011665~mol}) = 7.62[/tex]