Respuesta :

[tex]x=9 \sqrt{3}[/tex]

Step-by-step explanation:

The image is attached below.

Given AB = 9

BC = x

AC = y = 18

Note that the given triangle is a right angled triangle.

We know that Pythagoras theorem states that in a right angle hypotenuse is equal to the sum of the squares of other two sides.

Using Pythagoras thereom,

[tex]A C^{2}=A B^{2}+B C^{2}[/tex]

[tex]18^{2}=9^{2}+x^{2}[/tex]

[tex]324=81+x^{2}[/tex]

[tex]x^{2}=324-81[/tex]

[tex]$x^{2}=243$[/tex]

Taking square root on both sides,

[tex]x=\sqrt{9 \times 9 \times 3}[/tex]

[tex]$x=9 \sqrt{3}$[/tex]

Hence, the value of x is [tex]9 \sqrt{3}[/tex].

Ver imagen arjunrv