The table can be used to determine the solution of equations, 2x − 2y = 6 and 4x + 4y = 28.

A table with 6 columns and 2 rows. The first column, Original System has 2 x minus 2 y equals 6 and 4 x plus 4 y equals 28. The second column, Equivalent System, has 4 x minus 4 y equals 12 and 4 x plus 4 y equals 28. The third column, Sum of equations in Equivalent System, has 8 x equals 40. The fourth column, Solution to System, is blank. The fifth column, New System Using Sum, has 4 x plus 4 y equals 28 and 8 x equals 40. The sixth column, Solution to New System is blank.

Which solution can be used to fill in both blanks in the table?

(2, 5)

(5, 2)
(5, −8)
(−8, 5)

Respuesta :

Answer:

[tex](5,2)[/tex]

Step-by-step explanation:

[tex]2x-2y=6\\4x+4y=28[/tex]

Column 1 :

[tex]2x-2y=6..........(1)\\4x+4y=28........(2)[/tex]

Column 2 :

Eqn(1) [tex]\times\ 2[/tex]

[tex]4x-4y=12\\4x+4y=28[/tex]

Column 3 :

Add the equations.

[tex](4x+4x)-4y+4y=12+28\\8x=40[/tex]

Fourth column :

[tex]8x=40\\x=\frac{40}{8}=5[/tex]

Fift column :

[tex]4x+4y=28\\8x=40[/tex]

Sixth column :

Substitute [tex]x=5[/tex].

[tex]4\times 5+4y=28\\4y=28-20\\4y=8\\y=2[/tex]

Hence solution is [tex](5,2)[/tex].

Answer:

I'm terrible at explaining so here's a screenshot

- Ripper

Step-by-step explanation:

Ver imagen ym039961