Find the volume of the solid generated by revolving the region bounded by
y=5√sinx, y =0 and x1 = π/4 and x2 = π/2 about the x- axis.

Respuesta :

Answer:

[tex]V =\dfrac{25\pi}{\sqrt{2}}[/tex]

Step-by-step explanation:

given,

y=5√sinx

Volume of the solid by revolving

[tex]V = \int_a^b(\pi y^2)dx[/tex]

a and b are the limits of the integrals

now,

[tex]V = \int_a^b(\pi (5\sqrt{sinx})^2)dx[/tex]

[tex]V =25\pi \int_{\pi/4}^{\pi/2}sinxdx[/tex]

[tex]\int sin x = - cos x[/tex]

[tex]V =25\pi [-cos x]_{\pi/4}^{\pi/2}[/tex]

[tex]V =25\pi [-cos (\pi/2)+cos(\pi/4)][/tex]

[tex]V =25\pi [0+\dfrac{1}{\sqrt{2}}][/tex]

[tex]V =\dfrac{25\pi}{\sqrt{2}}[/tex]

volume of the solid generated is equal to [tex]V =\dfrac{25\pi}{\sqrt{2}}[/tex]