The volume of the sphere is StartFraction 500 Over 3 EndFractionπ cubic units. A sphere has a radius of x units. What is the value of x? 4 units 5 units 8 units 10 units

Respuesta :

Answer:

(b) Radius of the sphere = 5 units.

Step-by-step explanation:

Here, given:

The volume of the sphere  = [tex](\frac{500}{3})\pi[/tex] cubic units  ... (1)

Also, radius of the sphere  = x  units

Now, VOLUME OF SPHERE  = [tex](\frac{4}{3}) \pi r^3[/tex]

So, volume of a sphere with radius x  = [tex](\frac{4}{3}) \pi (x)^3[/tex]

But volume of sphere is given by (1).

[tex]\implies (\frac{500}{3})\pi = (\frac{4}{3}) \pi (x)^3\\\implies (\frac{500}{3}) = (\frac{4}{3}) (x)^3\\\implies x^3 = (\frac{500}{3})  \times (\frac{3}{4})  = 125\\\implies x^ 3 = 125 = (5)^3\\\implies x  = 5[/tex]

Hence, radius of the sphere = 5 units.

Answer:

5 units

Step-by-step explanation:

Otras preguntas