A rancher decides to make 4 identical and adjacent rectangular pens against her barn each with an area of 100m^2. What are the dimensions of each pen that minimize the amount of fence that must be used?

Respuesta :

Answer:

Dimensions of each pen are [tex]x=5\sqrt{5}[/tex] and [tex]y=4\sqrt{5}[/tex].

Step-by-step explanation:

Please find the attachment.

We have been given that a rancher decides to make 4 identical and adjacent rectangular pens against her barn each with an area of [tex]100m^2[/tex].  

The area of rectangle is width times length, so we can set an equation as:

[tex]x\cdot y=100...(1)[/tex]    

The fence of 4 identical and adjacent rectangular pens will be equal to perimeter of 4 adjacent rectangles as:

[tex]\text{Perimeter}=4x+5y[/tex]

From equation (1), we will get:

[tex]y=\frac{100}{x}[/tex]  

Upon substituting this value in perimeter equation, we will get:

[tex]P=4x+5(\frac{100}{x})[/tex]

[tex]P=4x+\frac{500}{x}[/tex]  

Now, we will find the first derivative of perimeter equation as:

[tex]P=4x+500x^{-1}[/tex]  

[tex]P'=4-500x^{-2}[/tex]  

Now, we will equate 1st derivative equal to 0 to find the critical points:

[tex]4-500x^{-2}=0[/tex]  

[tex]-\frac{500}{x^{2}}=-8[/tex]  

[tex]\frac{500}{x^{2}}=4[/tex]  

[tex]4x^{2}=500[/tex]  

[tex]x^{2}=125[/tex]  

[tex]x=\sqrt{125}[/tex]

[tex]x=5\sqrt{5}[/tex]  

Now, we will find 2nd derivative of above equation as:

[tex]P''=0-(-2*500)x^{-2-1}[/tex]  

[tex]P''=1000x^{-3}[/tex]

[tex]P''=\frac{1000}{x^3}[/tex]  

Now, we will check point [tex]x=5\sqrt{5}[/tex] in 2nd derivative, if it is positive, then x will be a minimum point.

[tex]P''(5\sqrt{5})=\frac{1000}{(5\sqrt{5})^3}[/tex]  

[tex]P''(5\sqrt{5})=\frac{1000}{625\sqrt{5}}[/tex]

[tex]P''(5\sqrt{5})=0.71554[/tex]

Since 2nd derivative is positive, so fence will be minimum at [tex]x=5\sqrt{5}[/tex].

Now, we will substitute [tex]x=5\sqrt{5}[/tex] in equation [tex]y=\frac{100}{x}[/tex] to solve for y as:

[tex]y=\frac{100}{5\sqrt{5}}[/tex]  

[tex]y=\frac{20}{\sqrt{5}}[/tex]  

[tex]y=4\sqrt{5}[/tex]  

Therefore, the fence will be minimum at [tex]y=4\sqrt{5}[/tex].

Ver imagen ApusApus