Respuesta :

Answer:

All real numbers [tex]\left|x\right|\ge2[/tex]

Step-by-step explanation:

we have

[tex]f(x)=x^{2}[/tex]

[tex]g(x)=\sqrt{x-4}[/tex]

we know that

To obtain g(f(x)), substitute the variable x in the function g(x) by the function f(x)

so

[tex]g(f(x))=\sqrt{x^{2}-4}[/tex]

To determine the domain, remember that the radicand must be greater than or equal to zero

[tex]x^{2}-4\geq 0[/tex]

Adds 4 both sides

[tex]x^{2}\geq 4[/tex]

square root both sides

The solutions are

[tex]x\geq 2[/tex]

[tex]x\leq -2[/tex]

The domain is

(-∞,-2] ∪ [2,∞)

This expression is equivalent to say

All real numbers [tex]\left|x\right|\ge2[/tex]