Respuesta :

Answer:

[tex]x^2+(y-1)^2=1[/tex]

Step-by-step explanation:

The given cylindrical equation is

[tex]r=2\sin \theta[/tex]

Multiply both sides by r.

[tex]r^2=2r\sin \theta[/tex]           .... (1)

The required formulas are

[tex]x=r\cos \theta,y=r\sin \theta,r^2=x^2+y^2[/tex]

Substitute [tex]r\sin \theta =y,r^2=x^2+y^2[/tex] in equation (1).

[tex]x^2+y^2=2y[/tex]

[tex]x^2+y^2-2y=0[/tex]

Add 1 on both sides.

[tex]x^2+(y^2-2y+1)=1[/tex]

[tex](x-0)^2+(y-1)^2=1^2[/tex]                    [tex][\because (a-b)^2=a^2-2ab+b^2][/tex]

It is the equation of a circle centered at (0,1) with radius 1.

Therefore, the equation in rectangular coordinates is [tex]x^2+(y-1)^2=1[/tex].