URGENT! WILL GIVE BRAINLIEST!!
m + b, 2m + b, 3m + b, 4m + b, ... is an infinite sequence. This sequence may be defined in many ways. Which is not a correct way to define this sequence?

A) f(x) = mx + b for x = {1, 2, 3, ...}

B) f(x) = 2m + b + m(x − 2) for x = {1, 2, 3, ...}

C) an = m − b + m(n − 1) for n = {1, 2, 3, ...}

D) a1 = m + b and an + 1 = an + m for n = {1, 2, 3, ...}

Respuesta :

Answer:

Option C) [tex]a_{n}=m-b+m(n-1)[/tex] for [tex]n={\{1,2,3,..}\}[/tex]

is the answer

Step-by-step explanation:

Given infinite sequence is [tex]{\{m+b,2m+b,3m+b,...}\}[/tex]

[tex]a_{n}=m-b+m(n-1)[/tex] for [tex]n={\{1,2,3,..}\}[/tex] is not the correct way to define the given infinite sequence

Put n=1 in [tex]a_{n}=m-b+m(n-1)[/tex]

[tex]a_{1}=m-b+m(1-1)[/tex]

[tex]=m-b[/tex]

[tex]a_{1}=m-b[/tex]

Put n=2 in [tex]a_{n}=m-b+m(n-1)[/tex]

[tex]a_{2}=m-b+m(2-1)[/tex]

[tex]=m-b+m[/tex]

[tex]a_{2}=2m-b[/tex]

Put n=3 in [tex]a_{n}=m-b+m(n-1)[/tex]

[tex]a_{3}=m-b+m(3-1)[/tex]

[tex]=m-b+2m[/tex]

[tex]a_{3}=3m-b[/tex]

Therefore the infinite sequence [tex]{\{m-b.2m-b,3m-b,...}\}[/tex] for [tex]a_{n}=m-b+m(n-1)[/tex] for [tex]n={\{1,2,3,..}\}[/tex] is not same as the given infinite sequence [tex]{\{m+b,2m+b,3m+b,...}\}[/tex]

Therefore option C) [tex]a_{n}=m-b+m(n-1)[/tex] for [tex]n={\{1,2,3,..}\}[/tex]

is the answer

Answer:

C if your doing prep

Step-by-step explanation:

math