What is the inverse of f(x)=(x+6)2 for x≥–6 where function g is the inverse of function f? g(x)=x√−6, x≥0 g(x)=x−6−−−−√, x≥6 g(x)=x√+6, x≥0 g(x)=x+6−−−−√, x≥−6

Respuesta :

Answer:

[tex]g(x)=\sqrt{x}-6[/tex], x>=0

Step-by-step explanation:

[tex]f(x)=(x+6)^2[/tex]

To find the inverse function , replace f(x) by y

[tex]y=(x+6)^2[/tex]

Replace x with y and y with x

[tex]x=(y+6)^2[/tex]

Solve the equation for y

take square root on both sides

[tex]+\sqrt{x} =y+6[/tex]

Now subtract 6 from both sides

[tex]+\sqrt{x}-6=y[/tex]

replace y with g(x)

[tex]g(x)=\sqrt{x}-6[/tex]

The inverse of a function is its opposite

The inverse of the function is [tex]\mathbf{g(x) = \sqrt x - 6}[/tex] x >= 0

The function is given as:

[tex]\mathbf{f(x) = (x + 6)^2}[/tex]

Rewrite as:

[tex]\mathbf{y = (x + 6)^2}[/tex]

Swap x and y

[tex]\mathbf{x = (y + 6)^2}[/tex]

Take square roots of both sides

[tex]\mathbf{\sqrt x = y + 6}[/tex]

Subtract 6 from both sides

[tex]\mathbf{y = \sqrt x - 6}[/tex]

Rewrite as:

[tex]\mathbf{g(x) = \sqrt x - 6}[/tex]

Hence, the inverse of the function is [tex]\mathbf{g(x) = \sqrt x - 6}[/tex] x >= 0

Read more about inverse functions at:

https://brainly.com/question/10300045