You roll two fair dice, one green and one red.

(a) Are the outcomes on the dice independent?

i. Yes
ii. No
(b) Find P(5 on green die and 3 on red die). (Enter your answer as a fraction.)
(c) Find P(3 on green die and 5 on red die). (Enter your answer as a fraction.)
(d) Find P((5 on green die and 3 on red die) or (3 on green die and 5 on red die)). (Enter your answer as a fraction.)

Respuesta :

Answer: a) i. Yes

b) [tex]\dfrac{1}{36}[/tex]

c) [tex]\dfrac{1}{36}[/tex]

d)  [tex]\dfrac{1}{18}[/tex]

Step-by-step explanation:

a) If we roll two different dice , then the outcomes on the dice are independent of each other.

So , if we roll two fair dice, one green and one red. , then the outcomes on the dice are independent.

Therefore , correct answer is "Yes".

b) Total outcomes on each die = 6      (1,2,3,4,5,6)

[tex]Probability=\dfrac{Favorable \ outcomes}{Total \ outcomes}[/tex]

[tex]P(\text{5 on green die })=\dfrac{1}{6}[/tex] [tex]P(\text{3 on red die })=\dfrac{1}{6}[/tex]

If any two event E and F are independent , then P(E and F)= P(E) x P(F)

P(E or F)= P(E)+P()

Find P(5 on green die and 3 on red die) = P(5 on green die) x P(3 on red die)

[tex]=\dfrac{1}{6}\times\dfrac{1}{6}=\dfrac{1}{36}[/tex]

So ,P(5 on green die and 3 on red die) [tex]=\dfrac{1}{36}[/tex]

c) P(3 on green die and 5 on red die) = P(3 on green die) x P(5 on red die)

[tex]=\dfrac{1}{6}\times\dfrac{1}{6}=\dfrac{1}{36}[/tex]

So ,P(3 on green die and 5 on red die) [tex]=\dfrac{1}{36}[/tex]

d) P((5 on green die and 3 on red die) or (3 on green die and 5 on red die))

= P(3 on green die and 5 on red die) + P(5 on green die and 3 on red die) (∵ Both are mutually exclusive.)

[tex]=\dfrac{1}{63}+\dfrac{1}{36}=\dfrac{2}{36}=\dfrac{1}{18}[/tex]

P((5 on green die and 3 on red die) or (3 on green die and 5 on red die))

[tex]=\dfrac{1}{18}[/tex]