Suppose that the functions f and g are defined for all real numbers x as follows.
f(x) = x - 5, g(x) = 2(x) + 6
Write the expressions for (f*g)(x) and (f-g)(x)..

Respuesta :

Answer:

[tex](f*g)(x)=2x^{2}-4x-30\\[/tex]

[tex](f-g)(x)=-(x+11)\\[/tex]

Step-by-step explanation:

the expression (f*g)(x) can be expanded as follows

[tex](f*g)(x)=f(x)*g(x)\\[/tex]

since [tex]f(x)=x-5,g(x)=2x+6[/tex]

Hence

[tex](f*g)(x)=f(x)*g(x)\\(f*g)(x)=(x-5)*(2x+6)\\(f*g)(x)=2x^{2}+6x-10x-30\\(f*g)(x)=2x^{2}-4x-30\\[/tex]

also the expansion for (f-g)(x) is express as

[tex](f-g)(x)=f(x)-g(x)\\[/tex]

also since

[tex]f(x)=x-5,g(x)=2x+6[/tex] then when we substitute values, we have

[tex](f-g)(x)=(x-5)-(2x+6)\\(f-g)(x)=x-5-2x-6\\(f-g)(x)=-x-11\\(f-g)(x)=-(x+11)\\[/tex]

For this type of operation kindly note the below expansions

[tex](f*g)(x)=f(x)*g(x)\\[/tex]

[tex](f-g)(x)=f(x)-g(x)\\[/tex]

[tex](f+g)(x)=f(x)+g(x)\\[/tex]

[tex](f/g)(x)=f(x)/g(x)\\[/tex]