Respuesta :

Answer:

[tex]1140[/tex]

Step-by-step explanation:

Combinations : If we want to choose [tex]r[/tex] items out of [tex]n[/tex] items, and order of the selection does not matter.

possible ways [tex]=^nc_{r}=\frac{n!}{r!(n-r)!}[/tex]

Total number of students [tex]=20[/tex]

Persons in subcommittee [tex]=3[/tex]

Here order of selection does not matter, so we can use combination to get possible number of ways.

Number of ways [tex]=^{20}c_{3}=\frac{20!}{(20-3)!3!}[/tex]

[tex]=\frac{20!}{17!\times 3!}=\frac{20\times 19\times 18\times 17!}{17!\times 3!}\\\\=\frac{20\times 19\times 18}{6}\\\\=20\times 19\times 3\\\\=1140[/tex]