Respuesta :

b = 17

Step-by-step explanation:

Step 1:

Given PQ = QR in triangle PQR.

So, triangle PQR is an isosceles triangle.

Hence, [tex]\angle \mathrm{QPR}=\angle \mathrm{QRP}=47^{\circ}[/tex] – – – – (1)

Step 2:

Let us consider two triangles PQS and SQR.

[tex]\angle \mathrm{PQS}=\angle \mathrm{SQR}=\mathrm{a}[/tex] (given angle)

PQ = QR (given side)

[tex]\angle \mathrm{QPS}=\angle \mathrm{QRS}=47^{\circ}[/tex] (angle proved in equation (1))

[tex]\therefore \Delta PQS=\Delta SQR[/tex] (by ASA congruence criterion)

Hence by corresponding parts of congruence triangles,

⇒ PS = SR

⇒ PS = 17

b = 17

Hence the value of b is 17.