Match each of the following complex numbers with its equivalent expression.

i^110

i^92

i^245

i^347

-i
-1
i
1






arrowBoth


arrowBoth


arrowBoth


arrowBoth

Respuesta :

Answer:

Therefore

[tex]i^{110}=-1[/tex]

[tex]i^{92}=1[/tex]

[tex]i^{245}=i[/tex]

[tex]i^{347}=-i[/tex]

Step-by-step explanation:

Complex Number :

A complex number is a number that can be expressed in the form

[tex]a + bi[/tex]

where a and b are real numbers, and

' i ' is called an imaginary number.

The value of i is given as

[tex]i=\sqrt{-1}[/tex]

Squaring both the side we get

[tex]i^{2}=(\sqrt{-1})^{2}\\\therefore i^{2}=-1[/tex]

Therefore on substituting we get

For i^110

[tex]i^{110}=(i^{2})^{55}=(-1)^{55}=-1[/tex]

Similarly for i^92

[tex]i^{92}=(i^{2})^{46}=(-1)^{46}=1[/tex]

Similarly for i^245

[tex]i^{245}=(i^{2})^{122}\times i=(-1)^{122}\times i=1\times i =i[/tex]

Similarly for i^347

[tex]i^{347}=(i^{2})^{173}\times i=(-1)^{173}\times i=-1\times i =-i[/tex]

Therefore

[tex]i^{110}=-1[/tex]

[tex]i^{92}=1[/tex]

[tex]i^{245}=i[/tex]

[tex]i^{347}=-i[/tex]

Answer:   Y

Step-by-step explanation: