Answer:
80
Step-by-step explanation:
We are given:
[tex]x(t) = 12t-5\\y(t) = 16t+3\\0\leq t\leq4[/tex] ⇒ [tex][\alpha,\beta] = [0,4][/tex]
To find arc length, we will use the following formula,
[tex]\int\limits^\beta_\alpha\sqrt{(\frac{dx}{dt})^2+\frac{dy}{dt})^2}\:dt=\int\limits^4_0\sqrt{12^2+16^2}\:dt=20t|^4_0 = 20*(4-0)=80[/tex]