What is the equation of a circle with diameter AB that has endpoints A(0, 0) and B(8, 6)?

A. (x − 4)2 + (y − 3)2 = 25

B. (x − 3)2 + (y − 4)2 = 5

C. (x − 4)2 + (y − 3)2 = 5

D.(x − 3)2 + (y − 4)2 = 25

Respuesta :

Answer:

A. [tex](x-4)^2+(y-3)^2=25[/tex]

Step-by-step explanation:

Radius:

The length of diameter[tex](d)[/tex] is the distance between A and B.

[tex]d=\sqrt{(8-0)^2+(6-0)^2}=\sqrt{64+36}=\sqrt{100}=10\\\\radius(r)=\frac{d}{2}=\frac{10}{2}=5[/tex]

Centre:

Since A and B are end points of the diameter, centre is the mid point of these two. Let [tex](x,y)[/tex] be the centre of the circle.

[tex]x=\frac{8+0}{2}=4\\\\y=\frac{6+0}{2}=3\\\\[/tex]

Centre is [tex](4,3)[/tex]

Equation of circle:

If [tex](a,b)[/tex] is the centre of the circle and [tex]r[/tex] be the radius. Equation of circle is given by:

[tex](x-a)^2+(y-b)^2=r^2[/tex]

[tex]Here\ (a,b)=(4,3)\ and\ r=5\\Equation:\ (x-4)^2+(y-3)^2=5^2\\(x-4)^2+(y-3)^2=25[/tex]