Respuesta :

Answer:

[tex]x^2+y^2+1.54\cdot{x}-11.08\cdot{y}+13.86=0[/tex]

Step-by-step explanation:

We can use the general formula method:

[tex]x^2+y^2+2\cdot(g)\cdot{x}+2\cdot(f)\cdot{y}+c=0[/tex]

We substitute point 1 (6,3) into the equation:

[tex]6^2+3^2+12\cdot(g)+6\cdot(f)+c=0[/tex]

[tex]12\cdot(g)+6\cdot(f)+c=-45[/tex]

We substitute point 2 into the equation

[tex](-4)^2+(-3)^2-8\cdot(g)-6\cdot(f)+c=0[/tex]

[tex]-8\cdot(g)-6\cdot(f)+c=-25[/tex]

We know that he centre is (-g,-f) and we substitute it into equation y-2x-7=0

[tex]-f+2\cdot{g}-7=0[/tex]

We have 3 equations and we have 3 unknowns. We can eliminate c by subtracting the first two equations:

[tex]20\cdot(g)+12\cdot(f)=-20[/tex]

now we can solve in terms of f and g:

[tex]f=2\cdot{g}-7[/tex] into the above equation:

[tex]20\cdot(g)+24\cdot{g}-14=-20[/tex]

Solve for g:

[tex]g=0.77[/tex]

f is [tex]f=-5.45[/tex]

Therefore c is:

[tex]-8\cdot(0.77)-6\cdot(-5.45)+c=-25[/tex]

[tex]c=13.86[/tex]

The equation of the circle is:

[tex]x^2+y^2+1.54\cdot{x}-11.08\cdot{y}+13.86=0[/tex]