Respuesta :
Answer:
The total number of revolution is 50 rev.
Explanation:
Given that,
Angular speed = 5.0 rev/s
Time = 8.0 s
We need to calculate the angular acceleration
Using equation of angular motion
[tex]\omega_{f}-\omega_{i}=\alpha t[/tex]
Put the value into the formula
[tex]5.0-0=\alpha\times8.0[/tex]
[tex]\alpha=\dfrac{5.0}{8.0}[/tex]
[tex]\alpha=0.625\ rev/s^2[/tex]
We need to calculate the angular displacement
Using equation of angular motion
[tex]\theta=\omega_{i}t+\dfrac{1}{2}\alpha t^2[/tex]
Put the value into the formula
[tex]\theta=0+\dfrac{1}{2}\times0.625\times(8.0)^2[/tex]
[tex]\theta=20\ rev[/tex]
Now, The washer coming to rest from top spin
We need to calculate the angular acceleration
Using equation of angular motion
[tex]\omega_{f}-\omega_{i}=\alpha t[/tex]
[tex]\alpha=\dfrac{\omega_{f}-\omega_{i}}{t}[/tex]
[tex]\alpha=\dfrac{0-5}{12}[/tex]
[tex]\alpha=−0.4167\ rev/s^2[/tex]
We need to calculate the angular displacement
Using formula of displacement
[tex]\theta'=\omega_{i}t+\dfrac{1}{2}\alpha t^2[/tex]
Put the value into the formula
[tex]\theta'=5\times12+\dfrac{1}{2}\times(-0.4167)\times12^2[/tex]
[tex]\theta'=30\ rev[/tex]
We need to calculate the total number of revolution
[tex]\theta''=\theta+\theta'[/tex]
[tex]\theta''=20+30[/tex]
[tex]\theta''=50\ rev[/tex]
Hence, The total number of revolution is 50 rev.