Samples from two independent, normally-distributed populations produced the following results.

Population 1 Population 2
Sample size 7 9
Sample mean 15.9 12.6
Sample standard deviation 10.2 13.4

Calculate the 95% confidence interval for the difference between population means μ1-μ2

a. 1.889
b. 8.6
c. 1.128
d. 1.286

Respuesta :

Answer: The 95% confidence interval for the difference between population means μ1-μ2 is [tex](-9.36,\ 15.96)[/tex] .

Step-by-step explanation:

Given : Samples from two independent, normally-distributed populations produced the following results.

                                     Population 1                 Population 2

Sample size                            7                                   9

Sample mean                        15.9                              12.6

Sample standard deviation 10.2                              13.4

The confidence interval for the difference between population means μ1-μ2 is given by :-

[tex]\overline{X_1}-\overline{X_2}\pm t^*\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2}}[/tex]

, where [tex]n_1[/tex] = sample size from population 1

[tex]n_1[/tex]  = sample size from population 2

[tex]\overline{X_1}-\overline{X_2}[/tex] = Difference between sample mean of two population

[tex]s_1[/tex]= Sample standard deviation of population 1.

[tex]s_2[/tex]= Sample standard deviation of population 2.

t* = Critical value for [tex]df=n_1+n_2-2[/tex] and significance [tex]\alpha/2[/tex].

As per given :

[tex]n_1=7[/tex]   [tex]n_2=9[/tex]

df = 7+9-2=14

[tex]\overline{X_1}-\overline{X_2}=15.9-12.6=3.3[/tex]

[tex]s_1=10.2[/tex]  [tex]s_2=13.4[/tex]

[tex]\alpha=1-0.95=0.05[/tex]

Critical t-value : [tex]t_{df, \alpha/2}=t_{14, 0.025}=2.145[/tex]

So , the 95% confidence interval for the difference between population means μ1-μ2 would be

[tex]3.3\pm (2.145)\sqrt{\dfrac{10.2^2}{7}+\dfrac{13.4^2}{9}}[/tex]

[tex]3.3\pm (2.145)\sqrt{14.86+19.95}[/tex]

[tex]3.3\pm (2.145)\sqrt{34.81}[/tex]

[tex]3.3\pm (2.145)(5.9)[/tex]

[tex]3.3\pm 12.66[/tex]

[tex](3.3-12.66,\ 3.3+12.66)=(-9.36,\ 15.96)[/tex]

Hence, the 95% confidence interval for the difference between population means μ1-μ2 : [tex](-9.36,\ 15.96)[/tex]