Answer:
[tex]y[/tex] intercept [tex]=10[/tex]
line [tex]y=-x+10[/tex]
Step-by-step explanation:
Let [tex]y=mx+b[/tex] is the required line.
Slope of perpendicular lines : If [tex]m_{1}[/tex] and [tex]m_{2}[/tex] be slope of two perpendicular lines. Them [tex]m_{1}\times m_{2}=-1[/tex]
[tex]y=mx+b[/tex] is perpendicular to [tex]y=x+10[/tex]
the slope of [tex]y=x+10[/tex] is [tex]=1[/tex]
[tex]m\times 1=-1\\m=-1[/tex]
Hence eqn is [tex]y=-x+b[/tex]
This equation passes through [tex](15,-5)[/tex]
[tex]-5=-15+b\\b=-5+15\\b=10[/tex]
so the line is [tex]y=-x+10[/tex]
y-intercept :
Substitute [tex]x=10[/tex]
[tex]y=0+10\\y=10[/tex]