What is the y-intercept of the equation of the line that is perpendicular to the line y =
x + 10 and passes through the point
(15,-5)?
Ov=x=20
Ov=-*}x+20
v=5x=20
y=-3x +20

Respuesta :

Answer:

[tex]y[/tex] intercept [tex]=10[/tex]

line [tex]y=-x+10[/tex]

Step-by-step explanation:

Let [tex]y=mx+b[/tex] is the required line.

Slope of perpendicular lines : If [tex]m_{1}[/tex] and [tex]m_{2}[/tex] be slope of two perpendicular lines. Them [tex]m_{1}\times m_{2}=-1[/tex]

[tex]y=mx+b[/tex] is perpendicular to [tex]y=x+10[/tex]

the slope of [tex]y=x+10[/tex]  is [tex]=1[/tex]

[tex]m\times 1=-1\\m=-1[/tex]

Hence eqn is [tex]y=-x+b[/tex]

This equation passes through [tex](15,-5)[/tex]

[tex]-5=-15+b\\b=-5+15\\b=10[/tex]

so the line is [tex]y=-x+10[/tex]

y-intercept :

Substitute [tex]x=10[/tex]

[tex]y=0+10\\y=10[/tex]