Given that y^x=x^y, wich of the following expressions equal dy/dx?

Answer:
E. dy/dx = y (y − x ln y) / (x (x − y ln x))
Step-by-step explanation:
yˣ = xʸ
Take log of both sides.
ln yˣ = ln xʸ
x ln y = y ln x
Implicit derivative (use product rule and chain rule).
x (1/y dy/dx) + ln y (1) = y (1/x) + ln x (dy/dx)
Solve for dy/dx.
x/y dy/dx + ln y = y/x + ln x dy/dx
x² dy/dx + xy ln y = y² + xy ln x dy/dx
(x² − xy ln x) dy/dx = y² − xy ln y
dy/dx = (y² − xy ln y) / (x² − xy ln x)
dy/dx = y (y − x ln y) / (x (x − y ln x))
Answer:
E
Step-by-step explanation:
x^y = y^x
y lnx = x lny
Differentiation both sides with respect to x
(y' × lnx) + (y/x) = lny + x(1/y)y'
y'lnx + y/x = lny + (x/y)y'
y'[lnx - x/y] = lny - y/x
y'[(ylnx - x)/y] = (xlny - y)/x
y' = [y(xlny - y)] ÷ [x(ylnx - x)]
y' = [y(y- xlny)] ÷ [x(x - ylnx)]