Respuesta :

Answer:

The completed slope point equation is [tex]y=3x+23[/tex]

Step-by-step explanation:

Given points are (-8,-1) and (-6,5)

Now to find the slope with these points

[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

Let [tex](x_{1},y_{1})[/tex] and  [tex](x_{2},y_{2})[/tex] be the points (-8,-1) and (-6,5) respectively

Substitute all values in [tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex] we get

[tex]m=\frac{5-(-1)}{-6-(-8)}[/tex]

[tex]=\frac{5+1}{-6+8}[/tex]

[tex]=\frac{6}{2}[/tex]

[tex]=3[/tex]

Therefore m=3

Now to find the equation:

[tex]y-y_{1}=m(x-x_{1})[/tex]

Let  [tex](x_{1},y_{1})[/tex] be the point (-6,5)

Substitute the point (-6,5) and slope m=3

[tex]y-5=3(x-(-6))[/tex]

[tex]y-5=3(x+6)[/tex]

[tex]y-5=3x+18[/tex]

[tex]y=3x+18+5[/tex]

[tex]y=3x+23[/tex]

Therefore the completed slope point equation is [tex]y=3x+23[/tex]