Respuesta :

Answer:

60.04 cm

Step-by-step explanation:

Let the sides of the equilateral triangle be [tex]x\: cm[/tex]

The equilateral triangle has a height of 52 cm.

From the diagram in the attachment, we can apply the Pythagoras Theorem to obtain:

[tex]x^2=52^2+(\frac{x}{2})^2[/tex]

This implies that:

[tex]x^2=52^2+\frac{x^2}{4}[/tex]

We multiply through by 4 to get:

[tex]4x^2=10816+x^2[/tex]

Group similar terms to get:

[tex]4x^2- x^2=10816[/tex]

[tex]3x^2=10816[/tex]

[tex]x^2=3605.333[/tex]

Take square root to get:

[tex]x=\sqrt{3605.333}[/tex]

[tex]x=60.04[/tex]

Answer:

[tex]60.04\ cm[/tex]

Step-by-step explanation:

Let

a ----> the length of each side

we know that

Applying the Pythagorean Theorem

[tex]a^2=h^2+(a/2)^2[/tex]

solve for a

[tex]a^2-(a/2)^2=h^2[/tex]

[tex](3/4)a^2=h^2[/tex]

[tex]a^2=(4/3)h^2[/tex]

[tex]a^2=(4/3)(52)^2[/tex]

[tex]a=60.04\ cm[/tex]