Respuesta :

See the explanation:

Explanation:

Here we have two functions:

[tex]f(x)=2x+6 \ and \ g(x)=\frac{1}{2}x+2[/tex]

So we need to perform the following function compositions:

Case 1.

[tex]f(g(6))=? \\ \\ \\ First \ of \ all: \\ \\ f(g(x))=2(\frac{1}{2}x+2)+6 \\ \\ f(g(x))=x+4+6 \\ \\ f(g(x))=x+10 \\ \\ \\ So: \\ \\ f(g(x))=6+10 \\ \\ \boxed{f(g(6))=16}[/tex]

Case 2.

[tex]g(f(6))=? \\ \\ \\ First \ of \ all: \\ \\ g(f(x))=\frac{1}{2}(2x+6)+2 \\ \\ g(f(x))=x+3+2 \\ \\ g(f(x))=x+5 \\ \\ \\ So: \\ \\ g(f(6))=6+5 \\ \\ \boxed{g(f(6))=11}[/tex]

Case 3.

This was calculated in case 1:

[tex]f(g(x))=x+10[/tex]

Case 4.

This was calculated in case 3:

[tex]g(f(x))=x+5[/tex]

Learn more:

Inverse functions: https://brainly.com/question/12253822

#LearnWithBrainly