Respuesta :

Answer:

The solved given equation is [tex]x^3+x^2+16x-20=(x-2)(x-2)(x+5)[/tex].

Step-by-step explanation:

Given equation is [tex]-3x^3-x^2+54x-40=2x^2+6x+20[/tex]

To solve the given equation:

[tex]-3x^3-x^2+54x-40-2x^2-6x-20=0[/tex]

[tex]-3x^3-3x^2+48x-60=0[/tex]

Multiply the above equation into [tex]-\frac{1}{3}[/tex] on both sides

[tex]-3x^3-3x^2+48x-60\times (-\frac{1}{3})=0\times (-\frac{1}{3})[/tex]

[tex]x^3+x^2+16x-20=0[/tex]

To sove the equation by using synthetic division method

2_| 1     1   -16   20

     0    2    6   -20

     ___________

     1      3   -10    0

Therefore x-2 is a factor

Therefore the quadratic equation is [tex]x^2+3x-10=0[/tex]

(x-2)(x+5)=0

(x-2)=0 or (x+5)=0

[tex]x^2+3x-10=(x-2)(x+5)[/tex]

Therefore the factors are x-2,x-2,x+5

Therefore the solved given equation is [tex]x^3+x^2+16x-20=(x-2)(x-2)(x+5)[/tex]