The functions f and g are defined as follows.

Answer:
[tex]f(-5)=-16\\g(2)=-11[/tex]
Step-by-step explanation:
By definition, a relation is a function if and only if each input value have one and only one output value.
The input values are the x-values and the output values are the y-values.
Given the function f(x):
[tex]f(x)=3x-1[/tex]
You need to substitute [tex]x=-5[/tex] into this function:
[tex]f(-5)=3(-5)-1[/tex]
And now you must evaluate in order to find the corresponding output value.
You get:
[tex]f(-5)=-15-1\\\\f(-5)=-16[/tex]
The function g(x) is:
[tex]g(x)=-2x^2-3[/tex]
Then, you need to substitute [tex]x=2[/tex] in the function:
[tex]g(2)=-2(2)^2-3[/tex]
And finally you must evaluate in order to find the corresponding output value. This is:
[tex]g(2)=-2(4)-3\\\\g(2)=-8-3\\\\g(2)=-11[/tex]