Respuesta :

Answer:

The equation of the line is 7 x +5 y = 15.

Step-by-step explanation:

Here the given points are ( 5, -4) & ( -10, 17) -

Equation of a line whose points are given such that

( [tex]x_{1},y_{1}[/tex] ) & ( [tex]x_{2}, y_{2}[/tex]  )-

 y - [tex]y_{1}[/tex]   = [tex]\frac{y_{2} - y_{1}  }{x_{2} - x_{1}}[/tex]  ( x - [tex]x_{1}[/tex]  )

i.e.  y - (-4)= [tex]\frac{17 - (-4)}{-10 - 5}[/tex]  ( x- 5)

     y + 4 = [tex]\frac{17 + 4}{ -15}[/tex] ( x - 5)

     y + 4 = [tex]\frac{21}{-15}[/tex]  ( x - 5 )

     ( y + 4)  =  [tex]\frac{7}{- 5}[/tex] ( x - 5)

     5 (y + 4 ) = - 7 (x - 5 )

     5 y + 20 = -7 x + 35

     7 x + 5 y = 15

Hence the equation of the required line whose passes trough the points ( 5, -4) & ( -10, 17)  is 7 x + 5 y = 15.