Respuesta :
Answer:
The intersection is [tex](\frac{1+\sqrt{5}}{2},\log(\frac{1+\sqrt{5}}{2})[/tex].
The Problem:
What is the intersection point of [tex]y=\log(x)[/tex] and [tex]y=\frac{1}{2}\log(x+1)[/tex]?
Step-by-step explanation:
To find the intersection of [tex]y=\log(x)[/tex] and [tex]y=\frac{1}{2}\log(x+1)[/tex], we will need to find when they have a common point; when their [tex]x[/tex] and [tex]y[/tex] are the same.
Let's start with setting the [tex]y[/tex]'s equal to find those [tex]x[/tex]'s for which the [tex]y[/tex]'s are the same.
[tex]\log(x)=\frac{1}{2}\log(x+1)[/tex]
By power rule:
[tex]\log(x)=\log((x+1)^\frac{1}{2})[/tex]
Since [tex]\log(u)=\log(v)[/tex] implies [tex]u=v[/tex]:
[tex]x=(x+1)^\frac{1}{2}[/tex]
Squaring both sides to get rid of the fraction exponent:
[tex]x^2=x+1[/tex]
This is a quadratic equation.
Subtract [tex](x+1)[/tex] on both sides:
[tex]x^2-(x+1)=0[/tex]
[tex]x^2-x-1=0[/tex]
Comparing this to [tex]ax^2+bx+c=0[/tex] we see the following:
[tex]a=1[/tex]
[tex]b=-1[/tex]
[tex]c=-1[/tex]
Let's plug them into the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{1 \pm \sqrt{(-1)^2-4(1)(-1)}}{2(1)}[/tex]
[tex]x=\frac{1 \pm \sqrt{1+4}}{2}[/tex]
[tex]x=\frac{1 \pm \sqrt{5}}{2}[/tex]
So we have the solutions to the quadratic equation are:
[tex]x=\frac{1+\sqrt{5}}{2}[/tex] or [tex]x=\frac{1-\sqrt{5}}{2}[/tex].
The second solution definitely gives at least one of the logarithm equation problems.
Example: [tex]\log(x)[/tex] has problems when [tex]x \le 0[/tex] and so the second solution is a problem.
So the [tex]x[/tex] where the equations intersect is at [tex]x=\frac{1+\sqrt{5}}{2}[/tex].
Let's find the [tex]y[/tex]-coordinate.
You may use either equation.
I choose [tex]y=\log(x)[/tex].
[tex]y=\log(\frac{1+\sqrt{5}}{2})[/tex]
The intersection is [tex](\frac{1+\sqrt{5}}{2},\log(\frac{1+\sqrt{5}}{2})[/tex].