Respuesta :
Answer:
The true solution of given polynomial is 1.732 , - 1.732
Step-by-step explanation:
Given polynomial as :
[tex]\dfrac{x^{2} }{2 x - 6}[/tex] = [tex]\dfrac{9}{6 x - 18}[/tex]
Or, [tex]\dfrac{x^{2} }{2 (x - 3)}[/tex] = [tex]\dfrac{9}{6 (x - 3)}[/tex]
Or, [tex]\dfrac{x^{2} }{2 (x - 3)}[/tex] = [tex]\dfrac{3}{2 (x - 3)}[/tex]
Taking away 2 as common from denominator of both side
So, [tex]\dfrac{x^{2} }{(x - 3)}[/tex] = [tex]\dfrac{3}{(x - 3)}[/tex]
Now, cross multiplying both side
Or, x² × (x - 3) = 3 × (x - 3)
Or, [tex]\dfrac{x^{2} }{3}[/tex] = [tex]\dfrac{(x -3)}{(x - 3)}[/tex]
Or, [tex]\dfrac{x^{2} }{3}[/tex] = 1
∴ x² = 3
i.e x = [tex]\pm \sqrt{3}[/tex]
Or, x = 1.732 , and x = - 1.732
So, The value of x = 1.732 , - 1.732
Hence, The true solution of given polynomial is 1.732 , - 1.732 Answer