Respuesta :

Answer:

The true solution of given polynomial is  1.732 , - 1.732

Step-by-step explanation:

Given polynomial as :

[tex]\dfrac{x^{2} }{2 x - 6}[/tex] = [tex]\dfrac{9}{6 x - 18}[/tex]

Or, [tex]\dfrac{x^{2} }{2 (x - 3)}[/tex] = [tex]\dfrac{9}{6 (x - 3)}[/tex]

Or,  [tex]\dfrac{x^{2} }{2 (x - 3)}[/tex] = [tex]\dfrac{3}{2 (x - 3)}[/tex]

Taking away 2 as common from denominator of both side

So, [tex]\dfrac{x^{2} }{(x - 3)}[/tex] = [tex]\dfrac{3}{(x - 3)}[/tex]

Now, cross multiplying both side

Or,  x² × (x - 3) = 3 × (x - 3)

Or, [tex]\dfrac{x^{2} }{3}[/tex] = [tex]\dfrac{(x -3)}{(x - 3)}[/tex]

Or,  [tex]\dfrac{x^{2} }{3}[/tex] = 1

∴ x² = 3

i.e x = [tex]\pm \sqrt{3}[/tex]

Or, x = 1.732 , and x = - 1.732

So, The value of x = 1.732 , - 1.732

Hence, The true solution of given polynomial is  1.732 , - 1.732  Answer

Answer:

A on edge/e2020

Step-by-step explanation: