Respuesta :

The length of QS is 27 units.

Step-by-step explanation:

In the given rectangle QRST QS and RT are the diagonals. In a triangle, the opposite sides are equal and parallel. This implies that the diagonals of a rectangle are equal.

[tex]QS=RT \ QS=x^2+6x[/tex]

[tex]RT=8x+3[/tex]

[tex]x^2+6x=8x+3[/tex]

[tex]x^2+6x-8x-3=0[/tex]

[tex]x^2-2x-3=0[/tex]

We have obtained a quadratic equation here and solving this gives the possible values of QS.This can be solved using quadratic formula

[tex]x=(-b\pm \sqrt{(b^2-4ac))}/2a[/tex]

The quadratic equation is of the form [tex]ax^2+bxl+c=0[/tex]  

here a=1 b=-2 c=-3  

[tex]x=(-b\pm \sqrt{(b^2-4ac))}/2a[/tex]

[tex]x=x=(2 \pm \sqrt{ (-2^2-4 \times 1 \times -3))}/(2 \times 1)[/tex]

[tex]x=(2 \pm \sqrt{(4+12))} /2[/tex] or  

[tex]x=(2 \pm \sqrt{16)}/2 =(2\pm 4)/2 \ \ \ \ x=(2+4)/2=3 \ \ \ \ or  \ \ \ x=(2-4)/2=-1[/tex]

putting x=3 [tex]QS=x^2+6x[/tex]

[tex]=3^2+6 \times 3=9+18=27[/tex]

putting x=-1

[tex]QS=(-1)^2+6 \times -1=1-6=-5[/tex]

Since a length can have only positive values QS=27 units.