Respuesta :

Answer:

The equation of a vertical ellipse is  [tex]\frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\[/tex]

Step-by-step explanation:

Here, given:

Length of major axis:  20

⇒ 2 a  = 20  , or , a = 10

Length of minor axis:  12

⇒ 2 b  = 12  , or , b = 6

Also, center (h,k)  = (6,3)

Now, STANDARD EQUATION OF ELLIPSE :

[tex]\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2}   = 1\\[/tex]

Now, substituting the values, a, b , h and k in above expression, we get:

[tex]\frac{(x-6)^2}{10^2} + \frac{(y-3)^2}{6^2}   = 1\\[/tex]

or, [tex]\frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\[/tex]

Hence, the equation of a vertical ellipse is  [tex]\frac{(x-6)^2}{100} + \frac{(y-3)^2}{36}   = 1\\[/tex]