Respuesta :

Answer:

(12,-6)

Step-by-step explanation:

we have

[tex]y\leq \frac{4}{3}x+5[/tex] ----> inequality A

[tex]y\geq -\frac{5}{2}x+5[/tex] ---> inequality B

we know that

If a ordered pair is a solution of the system of inequalities, then the ordered pair must satisfy both inequalities (makes true both inequalities)

Verify each point

Substitute the value of x and the value of y  of each ordered pair in the inequality A and in the inequality B

case 1) (0,-1)

Inequality A

[tex]-1\leq \frac{4}{3}(0)+5[/tex]

[tex]-1\leq5[/tex] ----> is true

Inequality B

[tex]-1\geq -\frac{5}{2}(0)+5[/tex]

[tex]-1\geq 5[/tex] ----> is not true

therefore

The ordered pair is not a solution of the system

case 2) (0,3)

Inequality A

[tex]3\leq \frac{4}{3}(0)+5[/tex]

[tex]3\leq5[/tex] ----> is true

Inequality B

[tex]3\geq -\frac{5}{2}(0)+5[/tex]

[tex]3\geq 5[/tex] ----> is not true

therefore

The ordered pair is not a solution of the system

case 3) (-6,-6)

Inequality A

[tex]-6\leq \frac{4}{3}(-6)+5[/tex]

[tex]-6\leq-3[/tex] ----> is true

Inequality B

[tex]-6\geq -\frac{5}{2}(-6)+5[/tex]

[tex]-6\geq 20[/tex]----> is not true

therefore

The ordered pair is not a solution of the system

case 4) (12,-6)

Inequality A

[tex]-6\leq \frac{4}{3}(12)+5[/tex]

[tex]-6\leq21[/tex] ----> is true

Inequality B

[tex]-6\geq -\frac{5}{2}(12)+5[/tex]

[tex]-6\geq -25[/tex] ----> is true

therefore

The ordered pair is a solution of the system (makes true both inequalities)