Respuesta :
Answer:
Part 1) [tex]x=\frac{9}{4}[/tex]
Part 2) [tex]x=4[/tex]
Step-by-step explanation:
Analize two problems
Part 1) If y varies directly with x, and If y=-8 and x= -3 what’s x when y= 6
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]
step 1
Find the value of the constant of proportionality k
[tex]k=\frac{y}{x}[/tex]
For x=-3, y=-8
substitute the given values
[tex]k=\frac{-8}{-3}[/tex]
[tex]k=\frac{8}{3}[/tex]
step 2
Find the linear equation
[tex]y=\frac{8}{3}x[/tex]
step 3
Find the value of x when y=6
substitute the value of y in the linear equation
[tex]6=\frac{8}{3}x[/tex]
solve for x
[tex]x=(6)\frac{3}{8}[/tex]
[tex]x=\frac{18}{8}[/tex]
simplify
[tex]x=\frac{9}{4}[/tex]
Part 2) If y varies inversely with x, and If y=-8 and x= -3 what’s x when y= 6
we know that
A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form [tex]y*x=k[/tex] or [tex]y=k/x[/tex]
step 1
Find the value of the constant of proportionality k
[tex]k=y*x[/tex]
For x=-3, y=-8
substitute the given values
[tex]k=(-8)(-3)[/tex]
[tex]k=24[/tex]
step 2
Find the equation
[tex]yx=24[/tex]
step 3
Find the value of x when y=6
substitute the value of y in the equation
[tex]6x=24[/tex]
solve for x
[tex]x=4[/tex]