Respuesta :
We can solve this by using the formula:
(x, y) (x + a, y + b) = (5,-4) (-2,1)
So, plugging in the values and solving for a and b,
5 + a = -2
a = -8
-4 + b = 1
b = 5
Therefore, the translation is
(x,y) (x - 8, y +5)
(x, y) (x + a, y + b) = (5,-4) (-2,1)
So, plugging in the values and solving for a and b,
5 + a = -2
a = -8
-4 + b = 1
b = 5
Therefore, the translation is
(x,y) (x - 8, y +5)
Answer:
The required algebraic rule of translation is [tex](x,y)\rightarrow (x-7,y+5)[/tex].
Step-by-step explanation:
The coordinates of a point are C(5, –4) and the coordinates of image are C’(–2, 1).
[tex]C(5,-4)\rightarrow C'(-2,1)[/tex] .... (1)
Let the algebraic rule of translation is
[tex](x,y)\rightarrow (x+a,y+b)[/tex] .... (2)
From (1) and (2) we get
[tex]x=5,y=-4[/tex]
[tex]x+a=-2[/tex]
[tex]5+a=-2[/tex]
[tex]a=-2-5[/tex]
[tex]a=-7[/tex]
The value of a is -7.
[tex]y+b=1[/tex]
[tex]-4+b=1[/tex]
[tex]b=1+4[/tex]
[tex]b=5[/tex]
The value of b is 5.
The algebraic rule of translation is
[tex](x,y)\rightarrow (x-7,y+5)[/tex]
Therefore the required algebraic rule of translation is [tex](x,y)\rightarrow (x-7,y+5)[/tex].