A circle is centered at the point (5, -4) and passes through the point (-3, 2).
The equation of this circle is (x + ?)2 + (y + ?)2 = ?

Respuesta :

caylus
Hello,

r²=(5+3)²+(-4-2)²=8²+6²=100

(x-5)²+(y+4)²=100

Answer:

[tex](x-5)^2+(y+4)^2=100[/tex]

Step-by-step explanation:

The standard form of a circle is

[tex](x-h)^2+(y-k)^2=r^2[/tex]             .... (1)

where, (h,k) is center of the circle and r is the radius.

It is given that a circle is centered at the point (5, -4) and passes through the point (-3, 2).

[tex]h=5,k=-4[/tex]

Distance between (5, -4) and (-3, 2) is radius of the circle.

[tex]r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]r=\sqrt{(-3-5)^2+(2-(-4))^2}[/tex]

[tex]r=\sqrt{(-8)^2+(6)^2}[/tex]

On further simplification we get

[tex]r=\sqrt{64+36}[/tex]

[tex]r=\sqrt{100}[/tex]

[tex]r=10[/tex]

The radius of the circle is 10 units.

Substitute h=5,k=-4 and r=10 in equation (1).

[tex](x-5)^2+(y-(-4))^2=(10)^2[/tex]

[tex](x-5)^2+(y+4)^2=100[/tex]

Therefore, the equation of the circle is [tex](x-5)^2+(y+4)^2=100[/tex].