Using the distributive property to find the product (y — 4)(y2 + 4y + 16) results in a polynomial of the form y3 + 4y2 + ay – 4y2 – ay – 64. What is the value of a in the polynomial?

Respuesta :

it is 16 well I just draw it out and i got if 




Answer:

product y ³  - 64 and a = 16.

Step-by-step explanation:

Given : (y — 4)(y² + 4y + 16) .

To find : Using the distributive property to find the product a polynomial of the form y³ + 4y² + ay – 4y² – ay – 64. What is the value of a in the polynomial?

Solution : We have given

(y — 4)(y² + 4y + 16) .

Distribute y over (y² + 4y + 16) and - 4 over (y² + 4y + 16).

y (y² + 4y + 16) - 4 (y² + 4y + 16).

y ³+ 4y² + 16 y - 4y² - 16y - 64.

This is in form of y³ + 4y² + ay – 4y² – ay – 64.

Here, a = 16.

Product : combine like terms

y ³+ 4y²  - 4y²  + 16y - 16y - 64.

y ³  - 64.

Therefore , product y ³  - 64 and a = 16.