Respuesta :

Answer:

The equation of the line is 3 x - 4 y + 22 = 0.

Step-by-step explanation:

Here the given points are (-6, 1) & (-2, 4)

Equation of a line whose points are given such that

( [tex]x_{1}, y_{1}[/tex]) & ( [tex]x_{2}, y_{2}[/tex] )-

 y - [tex]y_{1}[/tex] = [tex]\frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex]   ( x - [tex]x_{1}[/tex] )

i.e.  y - 1 = [tex]\frac{4-1}{-2 - (-6)}[/tex]    ( x- (-6))

     y - 1 = [tex]\frac{4-1}{-2 + 6}[/tex]  ( x + 6 )

     y - 1 = [tex]\frac{3}{4}[/tex]  ( x + 6 )

     4 ( y - 1 ) = 3 ( x + 6)

     4 y - 4 = 3 x + 18

     3 x - 4 y + 22 = 0

Hence the equation of the required line whose passes trough the points ( -6, 1) & ( -2, 4)  is 3 x - 4 y + 22 = 0.