contestada

A vector u has a magnitude of 15 and a direction of 0 degrees. A vector v has a magnitude of 9 and a direction of 35 degrees. Find the direction and magnitude of u+v to the nearest whole values

Respuesta :

Answer:

[tex]\displaystyle \alpha \simeq 13^o[/tex]

[tex]\displaystyle \left | \vec{u}+\bar{v} \right |\simeq 23[/tex]

Step-by-step explanation:

Sum Of Vectors

Given

[tex]\displaystyle \vec{u}=<a,b>, \vec{v}=<c,d>[/tex]

the sum of both is

[tex]\displaystyle \vec{u}+\vec{u}=<a+c,b+d>[/tex]

Given a vector

[tex]\displaystyle \vec{x}=<m,n>[/tex]

The magnitude of \vec x is

[tex]\displaystyle \left | \vec{x} \right |=\sqrt{m^2+n^2}[/tex]

And the angle is forms with the positive x-axis is

[tex]\displaystyle tan\alpha =\frac{n}{m}[/tex]

We have

[tex]\displaystyle \vec{u}=<15\ cos0^o,15\ sin\ 0^o>[/tex]

[tex]\displaystyle \vec{u}=<15,0>[/tex]

Also

[tex]\displaystyle \vec{v}=<9\ Cos\ 35^o,9\ sin\ 35^o>[/tex]

[tex]\displaystyle \vec{v}=< 7.372,5.162>[/tex]

The sum of both vectors is

[tex]\displaystyle \vec{u}+\vec{v}=<15+7.372,0+5.162>[/tex]

[tex]\displaystyle \vec{u}+\vec{v}=<22.732,0+5.162>[/tex]

The magnitude of the sum is

[tex]\displaystyle \left | \vec{u}+\vec{v} \right |=\sqrt{22.732^2+5.162^2}=22.96[/tex]

We compute the angle (direction)

[tex]\displaystyle tan\alpha =\frac{5.162}{22.732}=0.227[/tex]

[tex]\displaystyle \alpha =12.79^o[/tex]

Rounding to the nearest integer

[tex]\displaystyle \alpha \simeq 13^o[/tex]

Rounding the magnitude

[tex]\displaystyle \left | \vec{u}+\bar{v} \right |\simeq 23[/tex]