Respuesta :
Answer:
Step-by-step explanation:
discriminant=5²-4×1×7=25-28=-3<0
no real number solution.
Answer:
There are no real solutions for the equation [tex]x^{2}+5x+7[/tex].
Step-by-step explanation:
For a quadratic equation given by [tex]ax^{2}+bx+c=0[/tex]
The number of real solutions are determined by discriminant D.
D=[tex]b^{2}-4ac[/tex]
if D>0 then the roots are real and distinct
if D=0 then roots are real and equal
if D<0 then real roots do not exist.
In this case,
a=1 b=5 and c=7
[tex]D=b^{2}-4ac=5^{2}-4\times1\times7=-3 < 0[/tex]
Since D<0, there are no real solutions.