Respuesta :

Answer:

The x-intercept of the function are at [tex](\frac{1 + \sqrt{57}}{2}, 0)[/tex] and [tex](\frac{1 - \sqrt{57}}{2}, 0)[/tex].

Step-by-step explanation:

The given function is f(x) = x² + 3x + 2 - 4x - 16

Now, we have to find the x-intercept of this function.

So, at x-intercept y = f(x) = 0.

Then, x² + 3x + 2 - 4x - 16 = 0

x² - x - 14 = 0

The left hand side can not be factorized. So, apply Sridhar Acharya's formula.

Therefore, [tex]x = \frac{-(- 1) + \sqrt{(-1)^{2} - 4(1) (- 14) } }{2(1)}[/tex] and  

[tex]x = \frac{-(- 1) - \sqrt{(-1)^{2} - 4(1) (- 14) } }{2(1)}[/tex]

⇒ [tex]x = \frac{1 + \sqrt{57} }{2}[/tex] and [tex]x = \frac{1 - \sqrt{57} }{2}[/tex]  

Therefore, the x-intercept of the function are at [tex](\frac{1 + \sqrt{57}}{2}, 0)[/tex] and [tex](\frac{1 - \sqrt{57}}{2}, 0)[/tex]. (Answer)